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Abstract

Air pollution intake represents the amount of pollution inhaled into the body and may be 

calculated by multiplying an individual’s ventilation rate with the concentration of pollutant 

present in their breathing zone. Ventilation rate is difficult to measure directly, and methods for 

estimating ventilation rate (and intake) are lacking. Therefore, the goal of this work was to 

examine how well linear models using heart rate and other basic physiologic data can predict 

personal ventilation rate.

We measured personal ventilation and heart rate among a panel of subjects (n = 36) while they 

conducted a series of specified routine tasks of varying exertion levels. From these data, 136 

candidate models were identified using a series of variable transformation and selection 

algorithms. A second “free-living” validation study (n = 26) served as an independent validation 

dataset for these candidate models.

The top-performing model, which included heart rate (Hr), resting heart rate (Hrest), age, sex, and 

hip circumference and interactions between sex with Hr, Hrest, age, and hip predicted ventilation 

rate (Ve) to within 11% and 33% for moderate (Ve = 45 L/min) and low (Ve= 15 L/min) intensity 

activities, respectively, based on the validation study. Many of the promising candidate models 

performed substantially worse under independent validation.
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Our results indicate that while measures of air pollution exposure and intake are highly correlated 

within tasks for a given individual, this correlation decreases substantially across tasks (i.e., as 

individuals go about a series of typical daily activities). This discordance between exposure and 

intake may influence exposure-response estimates in epidemiological studies. New air pollution 

studies should consider the trade-offs between the predictive ability of intake models and the error 

potentially introduced by not accounting for ventilation rate.

Introduction

Exposure to ambient air pollution is associated with increased risk for many adverse health 

conditions, including respiratory disease, cardiovascular disease, and cancer (1–6). The 

source-effect pathway (Figure 1) illustrates the major steps between air pollution emissions 

and a resulting health effect (7, 8); the pathway also provides a paradigm for research (and 

intervention) on the health effects of air pollution. Epidemiologic research commonly 

focuses on estimating exposure-response using ambient concentrations or personal 

exposures. Exposure concentrations are commonly used because they are feasible (from a 

study design perspective) and practical (from a regulatory perspective). However, previous 

research has demonstrated that the same external exposure may result in a different internal 

dose (9, 10). The use of exposure concentrations in epidemiologic studies ignores the 

differential pollutant doses that can be produced by heterogeneity in an individual’s intake 

and uptake of pollution. Thus, measurement error is likely introduced by ignoring person-to-

person variability in the exposure-dose relationship, potentially resulting in bias and a loss of 

precision (11, 12).

The inclusion of intake, the product of exposure concentration and minute ventilation rate, 

has been suggested for air pollution epidemiology and risk assessment to account for 

differences in the amount of air pollution people inhale (e.g. 13, 14) and to reduce 

measurement error because it is one step closer to dose on the source-effect pathway. 

Ventilation rate is generally not measured in air pollution exposure studies (and, therefore, 

neither is intake). Although ventilation rate can be measured directly using a facemask with 

an airflow sensor, this method is not appropriate when simultaneously measuring endpoints 

in health studies because the necessary equipment covers the mouth and nose and so 

modifies the intake of air pollution. Estimates of ventilation rate may be obtained from less 

invasive measures, such as heart rate (e.g. 15, 16-18), which is correlated with ventilation 

rate. Low-cost personal heart-rate monitors are becoming more common as the market for 

wearable sensors continues to grow, devices improve, and their use becomes more 

ubiquitous (19). Thus, with improved predictive models, ventilation rate can potentially be 

accounted for in large-scale air pollution studies and used in conjunction with ambient 

concentration to predict intake and reduce measurement error in air pollution studies.

Models to predict ventilation rate based on heart rate have been described previously; these 

models are typically calibrated using exercise testing (e.g. 16, 18) and often do not account 

for sedentary behaviors. Models to estimate minute ventilation from heart rate calibrated on 

an individual level perform relatively well (e.g. 13). Predictive models (i.e. those not 

calibrated to an individual but intended to be generalizable across individuals) perform less 
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well. Some studies have included subject-level measurements, including sex, height, weight, 

and spirometry to help explain between-person variation in the relationship between heart 

rate and ventilation, with mixed success (e.g. 18, 20). Measurements that capture body size 

such as height and weight are expected to explain some of the person-to-person variability in 

minute ventilation because of the higher energy demand associated with larger body sizes 

(21) and the correlation between body size and lung volume. Studies have also identified 

differences in how male’s and female’s minute ventilation responds to exercise (21, 22). 

Previous models have generally been validated using data from the training group (e.g. 

within-sample cross-validation techniques). Therefore, the performance (and 

generalizability) of these models is often uncertain when applied outside the original study 

population.

The objective of this study was to develop and validate models to predict ventilation rate 

from heart rate and other readily obtainable physiologic measurements (e.g. height and 

weight). More complex individual level measurements that require specialized equipment 

and/or clinical expertise such as lung function parameters were not considered to make the 

models easier to apply to larger studies prospectively and retrospectively. Such models may 

help reduce measurement error in epidemiologic research associated with ignoring 

differences in ventilation rate and, therefore, air pollution intake. Predictive ventilatory 

models of sufficient accuracy would help bridge the uncertainty between exposure and 

intake along the source-effect pathway.

2. Methods

Data were collected in two parts: a laboratory training study and a field validation study. The 

training study was used to develop candidate models for predicting ventilation rate from 

heart rate and other basic physiological variables. The validation study collected a new 

dataset under less controlled conditions to test the predictive models in a more realistic 

setting.

2.1 Participant Recruitment

We recruited healthy, adult volunteers to study their ventilation rate and heart rate as they 

completed activities requiring different levels of exertion. Inclusion criteria were: age 

between 18 and 65 years, non-smoking, and no major health problems (no self-reported 

chronic conditions, body mass index below 30 kg/m2, resting blood pressure below 160/100 

mm Hg, and stable use of any prescription medication) and not pregnant. Participants fasted 

for four hours prior to participation. The study protocol was approved by the Colorado State 

University Institutional Review Board; participants completed written informed consent.

2.2 Laboratory Training

Thirty-six participants were recruited for the laboratory study. Participants were fitted with 

an Oxycon Mobile indirect calorimetry system (CareFusion Respiratory Care, CA, USA) 

that measured breath-to-breath ventilation rate and heart rate averaged to five-second 

resolution (23). The Oxycon Mobile’s flow (to within 1.5% difference) and gas sensors were 

calibrated at laboratory temperature, pressure, and humidity on each study day after a 30 
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minute warm up period. A number of studies have examined the validity of the mask used 

by the Oxycon Mobile to measure ventilation rate, finding differences of less than 10% for 

the values reported here (e.g. 23, 24, 25). Physiologically implausible heart rate data (heart 

rate <30 and heart rate > 200), presumably due to instrument error, were removed during 

data analysis. Ventilation rate data fell within Before participants began activities, we 

measured their blood pressure (mm Hg), chest size (cm), height (cm), hip size (cm), waist 

size (cm) and weight (kg) according to American College of Sports Medicine (ACSM) 

guidelines for exercise testing and prescription (26). They also completed a questionnaire 

that included age and sex. Resting heart rate was calculated for the training tests as the 

sitting heart rate minus five beats per minute, to bring it closer to supine heart rate which is 

likely at least five beats per minute lower (27).

The participants performed 9 or 11 prescribed tasks (the higher speed walking tasks were 

added partway through the training study because the calibrated treadmill speed of 2 mph 

was thought to be somewhat lower than typical walking pace), lasting six minutes each, at 

the Colorado State University Human Performance Laboratory. Tasks included sitting, 

standing, walking at 3.2 and/or 4.8 kilometers per hour (km hr−1), walking with a 4.8 kg 

load split between bags held in each hand at 3.2 and/or 4.8 km hr−1, sweeping, stationary 

cycling at 50 watts, stationary cycling at 100 watts, and shoveling sand. Participants were 

asked not to speak during each task and given the option to rest between tasks. The last two 

minutes of data for each activity were averaged and used in the predictive model 

development.

2.3 Predictive Model Development

Candidate predictive models were developed from the training data using a two-stage 

approach in the R statistical language (version 3.3.1, The R Foundation for Statistical 

Computing, details in supplementary material 2). First, we identified variable 

transformations that improve the model fit. Second, we employed a variable selection 

procedure to test the inclusion of the transformed variables identified in the first stage and 

two-way interactions between those variables that improve the model fit. All models that 

performed above a pre-specified threshold were then validated against independent field 

data. Figure 2 illustrates the steps from variable selection to model validation described 

below.

In the first step, we used multi-fractional-polynomials (MFP) to identify nonlinear 

relationships between variables and ventilation rate. MFP combines stepwise variable 

selection with polynomial transformations (28–30). We restrict the fractional polynomials to 

linear combinations of two terms, with powers, −2, −1, loge, 0.5, 1, 2 or 3 to limit the chance 

of overfitting and maintain a more interpretable model (31). We used a bootstrapping 

procedure (n = 10,000) to account for uncertainty in models selected by MFP (29). 

Candidate variables and their transformations that were selected by MFP in more than 15% 

(chosen to deliver a manageable number of models for analysis) of the bootstrap runs were 

retained for further consideration.

The second stage of the model building approach performs an exhaustive search of the 

candidate variables and their transformations identified with MFP including searching all 
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two-way interactions between variables using the R package glmulti (32). A participant-

specific random effect was included in the models to account for the same individual 

performing different activities. We selected all models with an Akaike information criterion 

(AIC) within two of the best fitting model (for each set of candidate variables) as the 

candidate models retained for further testing (33, 34). We restricted the models to contain at 

most one size variable (chest, height, hip, waist, or weight) and conducted a separate 

iteration of the glmulti algorithm for each variable to reduce the computational burden. This 

variable reduction step is also justified by the correlation between the size variables and 

small differences in MFP model performance between models with one or multiple size 

variables.

The predictive ability of each candidate model was tested using leave-one-out cross 

validation (35) on the training dataset for comparison to the independent validation. Each 

model was fitted with one subject’s training data removed at a time. Root mean square error 

(RMSE) for predicting the removed observations was calculated for each person on each 

task and averaged to obtain the mean RMSE for each task and the overall mean RMSE. 

Cross validation is commonly used to test the performance of predictive ventilatory models 

(e.g. 16, 36-38). We chose leave-one-out cross validation because this technique is widely 

reported with these types of models and because it is suitable for smaller datasets (39, 

section: 7.10). We also compare and contrast the cross- validation approach to an 

independent validation (i.e., validation against an independent dataset that was not used to 

for model development) in an effort to assess performance of the models and the cross-

validation approach, more generally. Additional details on the predictive model development 

are provided in supplementary material.

2.4 Simplified models

Model over-fitting is an important concern when searching using statistical methods to 

identify the best model. The use of AIC (which penalizes the addition of model terms), hold-

out validation, and independent validation is designed to minimize the chance of over-fitting. 

Additionally, we tested a set of simplified models with no interaction terms to test for over-

fitting in our model selection. All combinations of the MFP-identified variables would be 

tested. See supplementary material for a list of the simplified models tested.

2.5 Basic Model

A basic single-level linear model with the form:

Ve = β0 + β1Hr + ε [1]

where Hr as the only independent variable was also run. The basic model provides a 

reference to gauge improvements gained by the addition of variables. The basic model could 

also be identified by the variable selection procedure if its performance were good enough.
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2.6 Independent model validation in a field study

A second dataset was collected to validate the predictive performance of the candidate 

models identified from the training dataset. The validation study recruited 26 participants to 

perform a series of tasks at their own pace in and around the Colorado State University 

campus. These tasks involved walking (approximately 0.8 km), riding a bus (0.8 km), a 

seated task (a 6 minute, computer-based card game), an active task (approximately 10 

minutes, sorting and weighing colored balls), and cycling between two locations 

(approximately 1.6 km). A member of the study team accompanied participants to provide 

instructions and answer questions as needed. The entire series of tasks was designed to take 

around one hour to complete. Ventilation rate, heart rate and physiological data were 

collected in the same manner as the training study. Heart and ventilation rates were 

aggregated to a 30 s running average for the purpose of validation.

Ventilation rate was predicted using each of the candidate models identified from the 

laboratory training data as described in Section 2.3 as well as the simplified and basic heart 

rate models (Sections 2.4 and 2.5, respectively). Task-specific and overall RMSE (as 

described above) were calculated to assess model performance. Resting heart rate was 

calculated as the last two minutes of the sitting heart rate task minus 5 beats per minute.

2.7 Exposure assessment

Exposure to particle number (PN) was measured for a subset of participants (n = 11) from 

the validation study using a diffusion classifier (Disc Mini, Matter Aerosol AG, 

Switzerland). PN data were used to calculate the time-weighted average concentration 

(TWA), the time-weighted inhalation rate (i.e., number of particles inhaled per minute), and 

the intake (total number of particles inhaled) for each task and participant. The exposure 

metrics (inhaled PN versus PN concentration) were compared to each other using linear 

models within and between tasks. The relationship between inhaled PN and PN 

concentration is then used to assess the potential for exposure misclassification when 

concentration is used as a proxy for pollution dose. The predicted PN intake was compared 

to the measured PN intake across all tasks, again using a linear model. The relationship 

between measured and predicted intake is used to infer the usefulness of the predictive 

ventilatory models.

3. Results

3.1 Study population

Thirty-five out of thirty-six participants completed the laboratory training study, one 

participant could not complete all the activities and was removed from the analysis. Twenty-

six participants completed the validation study and heart rate data was successfully collected 

for twenty-two of the participants (Hr was not measured for four of the validation study 

participants due to malfunctioning heartrate leads). Less than 0.5% of the heart rate data was 

screened out of the analysis as a result of the heart rate range criteria (30–200 bpm). The 

participant characteristics are presented in Table 1.
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3.2 Laboratory training

3.2.1 Laboratory results—The (arithmetic) mean ventilation rate stratified by activity 

(Table 2) ranged from 9 to 45 L/min. Higher between-participant variability in ventilation 

rate was observed for the sweeping and shoveling tasks, which were performed at each 

participant’s own pace. The active tasks (walking and cycling) produced similar mean 

ventilation rates in the training and validation studies. The sitting tasks in the validation 

(sitting and bus ride) produced more variable ventilation rates with a higher mean, as some 

participant’s ventilation remained higher after completing a more active task beforehand.

3.2.2 Model building—The bootstrap MFP analysis showed consistent selection of 

variables over different iterations (equation 2) with Hr was selected 100% of the time, 54% 

of the time with the square root transformation and 24% with a logarithmic transformation. 

Hrest was selected 97% of the time, 77% of the time a transformation to the power of one 

(i.e., no transformation) was selected. Age was selected 83% of the time, suggested 

transformations varied, the most frequent a power one transformation that was selected 36% 

of the time. The categorical sex variable was selected in 78% of the runs. At least one size 
variable (chest, height, hip, waist or weight) appeared 92% of the time. A single size 
variable was selected in 36% (chest 16%, height 3%, hip 6%, waist 6%, and weight 5%) of 

the 10,000 bootstrap samples. Variable selection frequency and common power 

transformations from the bootstrap analysis are shown in Supplementary Material. Equation 

2 shows the model selected by the MFP algorithm prior to the bootstrap analysis. Cross-

validation of equation 2 results in a mean RMSE of 5.3 L/min.

Ve = β0 + β1 Hr + β2age + β3 chest  + β4Hrest + β5sex + ε [2]

Each glmulti search was repeated with three transformations of heart rate: untransformed, 

square root transformed, and log transformed. The glmulti analysis produced 136 unique 

candidate models with an AIC within two of the best model (for each set of candidate 

variables). Cross-validation of the candidate glmulti models resulted in RMSE of 4.9 to 5.4 

L/min, slightly higher than with the full data set (4.6 to 5.2 L/min).

The glmulti analysis identified potential interaction terms between sex and each of the other 

candidate variables. The Hr, Hrest, sex and sex-Hr variables were retained by all the glmulti 
candidate models with AIC within two of the best models. Interaction terms for sex -Hrest 

and sex -age were included in 50% and 43% of the models respectively. A size variable was 

included in 88% of the glmulti candidate models. A size-sex interaction term was included 

in 44% of the glmulti candidate models.

3.3 Validation

All 136 candidate models identified in the laboratory test were evaluated for predictive 

performance in the validation study. The best performing model had a mean participant 

weighted RMSE of 4.9 (s.d. = 1.21) L/min over the five activity categories. The best 

performing model in the validation study was:
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Ve = β0 + β1sex + β2Hr + β3age + β4Hrest + β5hip + β6sex × Hr + β7sex ×  age  + β8sex
× Hrest + β9sex × hip + ε

[3]

where β0 = 0.99, β1 = −27.41, β2 = 50.24, β3 = 15.73, β4 = −43.65, β5 = −7.02, β6 = 23.02, 

β7 = −10.34, β8 = −26.21, and β9 = 38.78. The full list of candidate models and their 

performance is provided in supplementary material.

The best performing models (RMSE 4.9–5.2 L/min) contained the untransformed Hr 

variable, followed closely by models with the square root Hr transform (RMSE 5.2–5.4 L/

min). The best log Hr transformed model had an RMSE of 5.7 L/min. The sex variable was 

contained in all the top 50 models (RMSE 4.9–5.7 L/min). The age variable was contained 

in all but two of the top 50 performing models. No single size variable consistently 

outperformed any other size variable. The sex x Hrest interaction appeared in all of the top 35 

models (max RMSE 5.5 L/min). The sex x Hr interaction appeared in all of the top 16 

models (max RMSE 5.2 L/min). The sex x age interaction resulted in some minor 

improvements when added (< 0.1 L/min RMSE).

The validated performance of the 136 candidate models (and their simplifications) is shown 

in Figure 3 and compared to their performance under cross-validation of the original training 

dataset. The validation RMSE tends to be higher than the training RMSE. The color coding 

in Figure 3 illustrates how certain variables and variable combinations appear consistently in 

the top performing models. The basic heart-rate only model (highlighted in Figure 3) 

produced an RMSE of 7.9 L/min. The top-performing model in the training cross-validation 

(RMSE = 4.9 L/min) performed worse in the validation (RMSE = 5.9 L/min) and is also 

highlighted in Figure 3.

The top-performing model (equation 3) was examined as a function of each task conducted 

during the validation experiment. The RMSE for Equation 3 (averaged by participant) was 

consistent from task to task (approximately 5 L/min), except for cycling where it increased 

to 7.5 L/min.

3.4 Basic model results

The basic heart rate only model (Equation 1), used to assess the value of additional 

variables, resulted in a mean RMSE of 7.4 liters per minute (L/min) across all activities. 

Cross-validation of the heart-rate only model resulted in a mean participant-weighted RMSE 

of 7.6 L/min (s.d. = 3.8), only slightly higher than the 7.4 L/min RMSE when all data were 

included. The candidate models with additional variables improved upon the heart rate only 

model by 2.2 to 2.7 L/min in terms of the cross-validated RMSE.
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3.5 Analysis of Exposure vs. Intake

Breathing zone particle number (PN) concentration was measured for 11 participants (one 

participant’s data was removed due to an instrument malfunction). Exposure (PN 

concentration) was compared to intake (PN inhaled) within task, illustrated in Figure 4. 

Within task there is generally a strong linear relationship between PN concentration and PN 

inhalation (R2 0.73–0.97). The relationship between time-weighted average exposure and 

intake was also explored between tasks (Figure 5). The relationship between exposure 

concentration and intake (Figure 5a) was only moderately linear across multiple tasks (linear 

model R2 = 0.53). Predicted intake (using the top-performing model) compared well to 

measured intake (Figure 5b). The predicted versus measured intake relationship has a higher 

R2 (0.93) than the exposure vs. intake relationship. The measured ventilation rates and 

exposure levels are provided in supplementary material.

4. Discussion

Accurate and generalizable models that predict personal ventilation rates may help reduce 

measurement error in epidemiological studies by bridging the gap between air pollution 

exposure and intake. Personal heart rate can be used to predict ventilation rate for the 

purpose of estimating air pollution intake. In addition to heart rate, the models developed 

here used variables that may be feasibly collected in many epidemiologic studies.

The top-performing model produced a task-average RMSE of 4.9 L/min in the validation 

study. The candidate models have similar errors under laboratory training cross-validation 

(4.9 – 5.4 L/min) but a larger range of errors (4.9 – 7.0 L/min) in the validation study. The 

difference in model performance between training and validation study datasets suggests that 

some over-fitting is occurring. Our sample size was similar to previous studies, suggesting 

that over-fitting could be a problem in previous studies that employ validation using the 

training dataset.

A novel aspect of our work is the inclusion of a resting heart rate variable, which was 

selected in every candidate model. The resting heart rate variable may add value to a 

predictive model because it helps account for the person-to-person variability in the heart 

rate - ventilation rate relationship - akin to the individually calibrated models. In this study, 

we defined resting heart rate as the sitting heart rate minus a constant of 5 beats-per-minute. 

Further work is needed to investigate how best to determine resting heart rate from 

continuous heart rate data measured during epidemiologic research, data collected during 

sleep should be a reliable method for example.

Our examination of the top models identified combinations of variables associated with 

improved performance. The age and sex variables were present in all models with RMSE 

less than approximately 5.5 L/min. Additionally, the best models with RMSE less than 

approximately 5.0 L/min contained a size and sex x Hr and or sex x Hrest interaction 

variables. Inclusion of these interaction terms, however, provided only marginal 

improvements to model performance (on the order of 10% improvement to RMSE).
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Here we are not attempting to derive a mechanistic understanding of the heart rate - 

ventilation rate relationship, however it is worth noting briefly because we might expect 

models that are physiologically consistent to be more robust. Differences in ventilation 

patterns by sex have been observed (21, 22) the inclusion of a sex term and interactions 

between sex and other variables is consistent with these findings. Heartrate dynamic range is 

known to decrease with age, however all else being equal the bodies ventilatory 

requirements do not, thus it is plausible that the heart rate - ventilation rate relationship is 

modified by age. Similarly, body size will affect energy demand and thus oxygen 

requirement, thus it is plausible that the heart rate - ventilation rate relationship is modified 

by a size variable.

A number of the simplified models performed as well in the independent validation as the 

more complex models, another reason to suggest the laboratory training cross-validation is 

under-estimating the model error. There are groups of models that do outperform the best 

simple model (RMSE <5.4 L/min), suggesting with careful variable selection and validation 

more complex models can deliver reductions in error. However, some of the complex models 

perform less well in the validation study, demonstrating the importance of model validation 

in a realistic setting.

An important distinction of this work is that the models are designed to predict ventilation 

rate from heart rate for different activities performed at low and moderate levels of exertion. 

Therefore, the linear ventilation - heart rate relationship in the top-performing model 

(equation 3) is quite different from the exponential relationship in models designed around 

progressive exercise testing. The models developed here are designed to be applied to 

everyday tasks and may produce larger errors for more extreme exercise activities. The 

models developed here are geared towards studies that seek to determine the health effects of 

air pollution across typical daily activities and within common microenvironments where 

individuals spend the majority of their time. The models tested here are unlikely to be 

suitable for higher exertion activities (e.g. sports) because the heart rate - ventilation rate 

relationship is non-linear across low to high heart rates (e.g. 18).

Ease of use in epidemiological studies was central to the model design. Our models require 

heart rate data (which is becoming easier to collect) and other commonly collected 

information. This approach will enable ventilation rate to be predicted in larger studies with 

little additional burden. The usefulness of predictive ventilatory models for epidemiologic 

studies of air pollution will depend on whether they are able to reduce error in the exposure-

response estimates. Investigators should consider if the modelled ventilation rate 

measurement error is smaller than the misclassification error implicit in not considering 

intake, as well as the type of error from each source and the implications for the specific 

epidemiologic study design. Work would also be required to validate or adapt these models 

developed using healthy populations for studies of unhealthy groups such as people with 

lung diseases.

Ventilation rate can vary both within individuals and between individuals, typically by up to 

4 L/min within and by up to a factor of four for between everyday tasks (40, 41). When 

ventilation rate is ignored in exposure assessment, there is an implicit assumption that it is 
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constant across the population, resulting in Berksonian error (42, 43). This variability, often 

unaccounted for in epidemiological studies, may reduce our ability to detect relationships 

between air pollution and health outcomes.

Our exploratory exposure analysis suggests that between tasks of different characteristic 

ventilation rate a predictive ventilatory model (RMSE = 4.9 L/min) may give a much better 

estimate of inhaled pollution (measured versus modelled intake R2 = 0.93) than time-

weighted-average exposure (measured exposure concentration versus measured intake R2 = 

0.53). For example, in studies that compare air pollution while driving to cycling you would 

expect to see substantial exposure misclassification if intake was not considered (44). If task 

is associated with ventilation rate then the ability to determine task in study populations 

could be useful. If task-specific models were developed they might be more precise. For 

large studies it would be useful to be able to classify common activities using wearable 

sensors (e.g. 45) eliminating the need for self-reported time-activity surveys. Within task 

there is a stronger linear relationship between measured intake and exposure (R2 0.73 to 

0.97) than between tasks, suggesting that predictive ventilatory models are less likely to be 

useful for tasks associated with more heterogeneous ventilation rates.

In conclusion, we developed and validated a set of models designed to predict ventilation 

rate from heart rate for everyday activities. We showed that cross-validation approaches, 

which rely on the same data used to train models, may over-estimate predictive ability. We 

found the best models contained a resting heart rate variable and specific combinations of 

variables describing subject’s size, age and sex also improved performance. Finally, we 

compared exposure data against measured and predicted intake data to demonstrate how 

their relationships may vary between micro-environments. Future work could focus on 

exploring the relationships between exposure, inhaled dose and health effects.

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The air pollution source-effect pathway from emissions to health effects (7). Air pollution is 

modified during transport from source to the point of exposure. A fraction of inhaled the 

pollution can remain in the body resulting in potential adverse health effects.
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Figure 2. 
Steps from variable selection to model validation. Nine variables are considered: age, blood 

pressure (bp), chest circumference (chest), height, heart rate (Hr), resting heart rate (Hrest), 

sex, and weight. A multi-fractional polynomial (MFP) algorithm was used to identify useful 

variables and their transformations. A two-way interaction search (glmulti) algorithm 

identified the best models from the MFP identified variables. Models were cross-validated 

using the training data and independently validated using the validation study dataset.
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Figure 3. 
Root mean square error (RMSE) of the 136 candidate (x) and 51 simplified (no interactions 

between variables - □) models under cross-validation (training study) and the independent 

validation study. The color- scale shows variables (where heart rate = Hr, resting heart rate = 

Hrest, sex interaction terms = sexx , and size is either chest, height, hip, waist, or weight) 
models have in common.
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Figure 4. 
Number concentration versus number of particles inhaled by task, with linear regression 

(black line) and 95% confidence interval (grey shading).
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Figure 5. 
(a) Measured personal exposure concentration versus measured intake. (b) Predicted intake 

versus measured intake. Black lines show linear model fit with 95% confidence interval 

(grey shading).
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Table 1

Participant characteristics for the training and validation datasets.

Variable Range Training
N (%)

Validation
N (%)

Age, years

18–24 3 (9%) 7 (27%)

25–34 8 (23%) 10 (38%)

35–44 7 (20%) 2 (8%)

45–54 6 (17%) 3 (12%)

55–65 11 (31%) 4(15%)

Chest, cm

60–70 1 (3%) 3 (12%)

70–80 13 (37%) 8(31%)

80–90 12 (34%) 9 (35%)

90–100 9 (26%) 5 (14%)

100–110 0 (0%) 1 (4%)

Weight, kg

40–50 2 (6%) 2 (8%)

50–60 5 (14%) 5 (19%)

60–70 15 (43%) 8(31%)

70–80 7 (20%) 5 (19%)

80–90 6 (17%) 5 (19%)

90–105 0 (0%) 1 (4%)

Sex
Female 19 (54%) 15 (58%)

Male 16 (46%) 11 (42%)

Resting heart rate, bpm

30–50 2 (6%) 5 (19%)

50–60 14 (40%) 5 (19%)

60–70 16 (46%) 2 (8%)

70–80 2 (6%) 8(31%)

80–100 1 (3%) 2 (8%)

Missing 0 (0%) 4(15%)
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Table 2

Mean participant ventilation rates (L/min) and standard deviations (s.d.) stratified by activity.

Activity Mean (s.d.) Training
N = 35

Mean (s.d.) Validation
N= 26

Sitting 8.8 (1.6) 15.1 (5.1)

Bus ride - 13.9 (5.6)

Standing still 9.4 (1.8) -

Sorting task - 17.6 (4.4)

Walking (2 mph) 19.5 (3.0) -

Loaded walk (2 mph) 22.0 (2.9) -

Walking (3 mph) 25.4 (2.7) -

Loaded walk (3 mph) 28.3 (3.7) -

Walking - 27.7 (5.8)

Cycling (50W) 30.3 (4.3) -

Cycling (100W) 44.9 (7.1) -

Cycling - 40.1 (10.7)

Sweeping 31.5 (7.1) -

Shoveling 37.7 (8.9) -
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